Machine Learning and having it deep and structured Hung-yi Lee

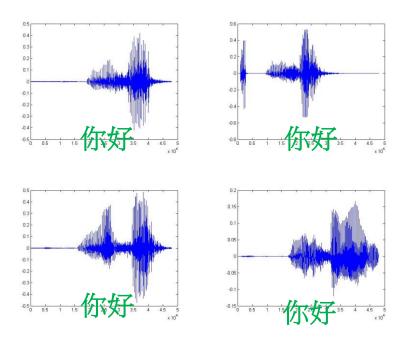
What is Machine Learning?

You know how to program ...

- You can ask computers to do lots of things for you.
- However, computer can only do what you ask it to do.
- Computer can never solve the problem you can't solve.

Some tasks are very complex

 One day, you are asked to write a program for speech recognition.

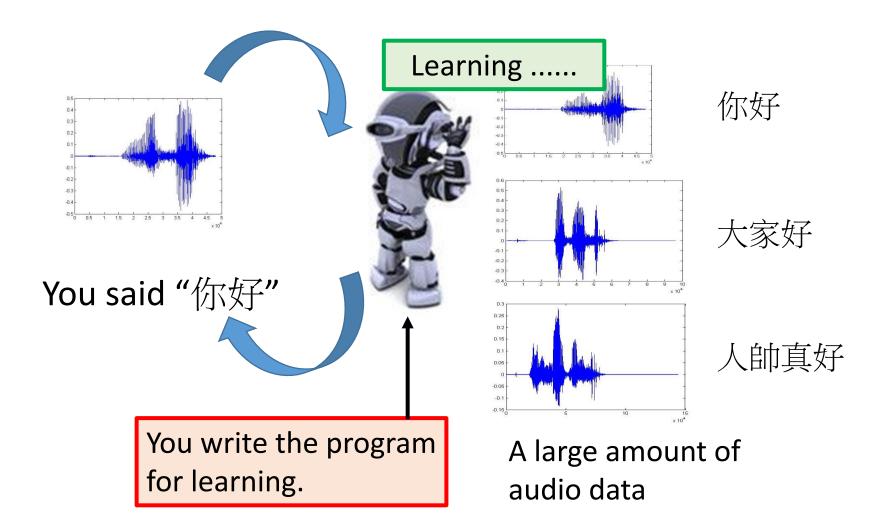


Find the common patterns from the left waveforms.

You quickly get lost in the exceptions and special cases.

It seems impossible to write a program for speech recognition.

Let the machine learn by itself



Learning ≈ Looking for a Function

• Speech Recognition

f()= "你好"

• Handwritten Recognition

Weather forecast

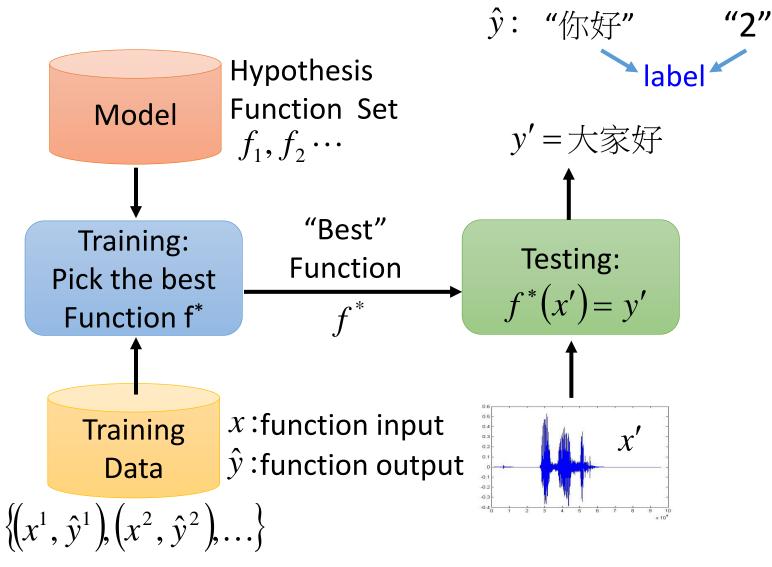
f(

• Play video games

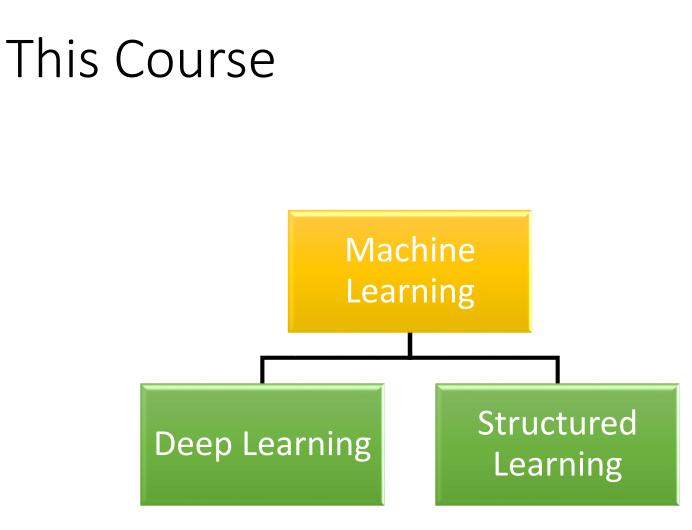
f

$$f(\begin{array}{c} Positions and \\ number of enemies \end{array}$$

Framework

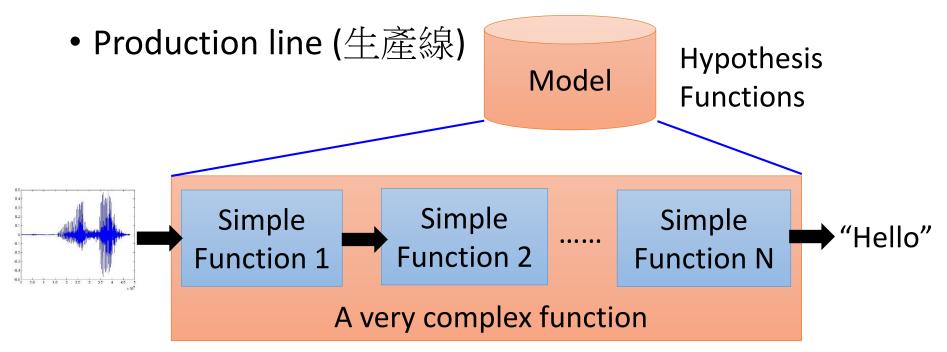


x:



Deep Learning

What is Deep Learning?

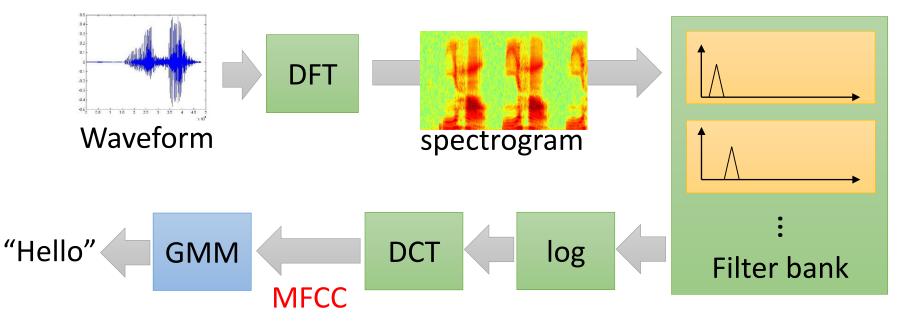


End-to-end training:

What each function should do is learned automatically

Deep v.s. Shallow - Speech Recognition

Shallow Approach



Each box is a simple function in the production line:

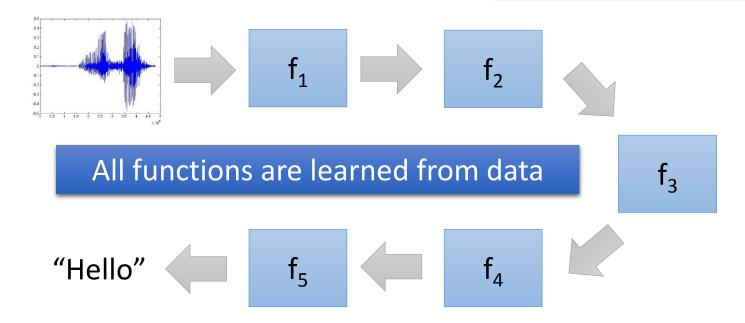
:hand-crafted

:learned from data

Deep v.s. Shallow - Speech Recognition

Deep Learning

"Bye bye, MFCC" - Deng Li in Interspeech 2014

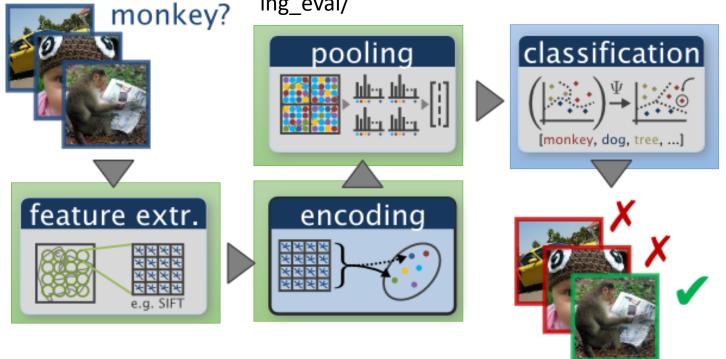


Less engineering labor, but machine learns more

Deep v.s. Shallow - Image Recognition

Shallow Approach

http://www.robots.ox.ac.uk/~vgg/research/encod ing_eval/



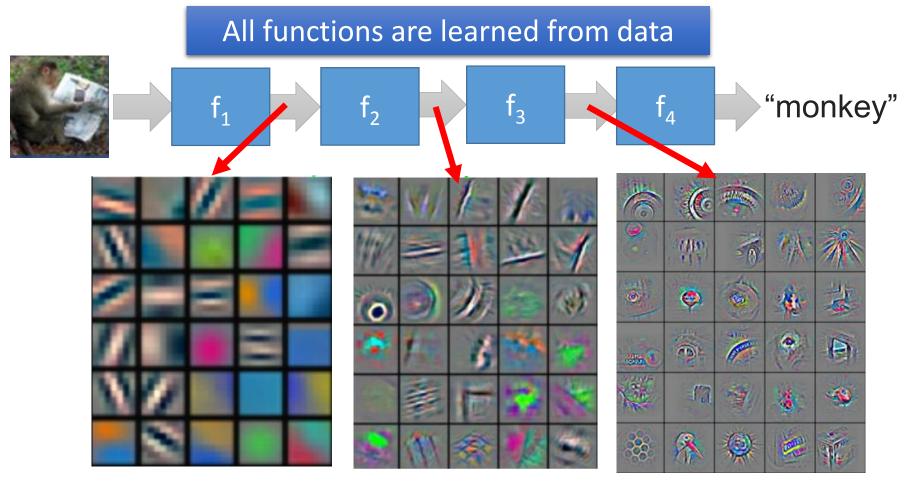
:hand-crafted

:learned from data

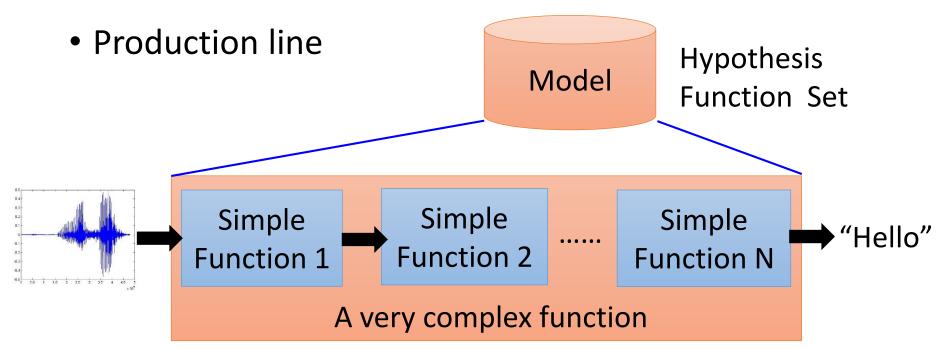
Deep v.s. Shallow - Image Recognition

• Deep Learning

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV* 2014 (pp. 818-833)



What is Deep Learning?

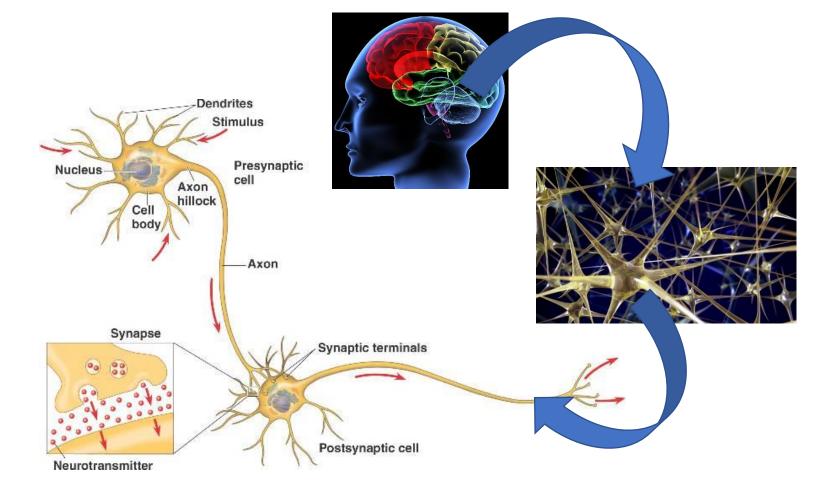


End-to-end training:

What each function should do is learned automatically

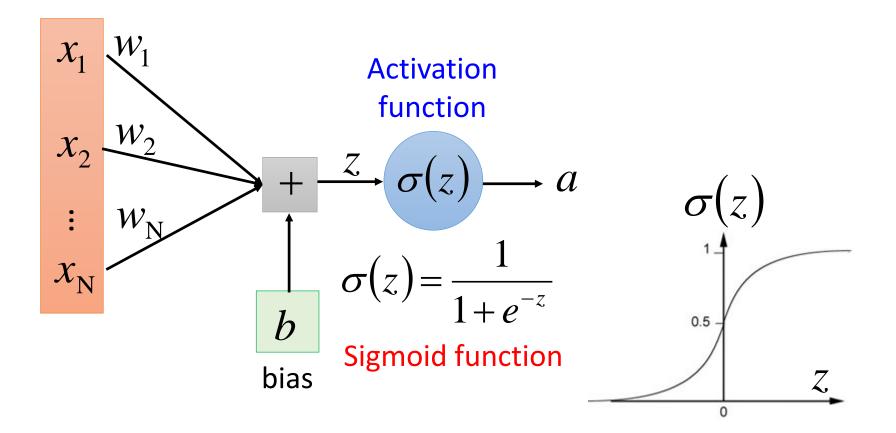
 Deep learning usually referred to neural network based approach

Inspired from Human Brains



A Neuron for Machine

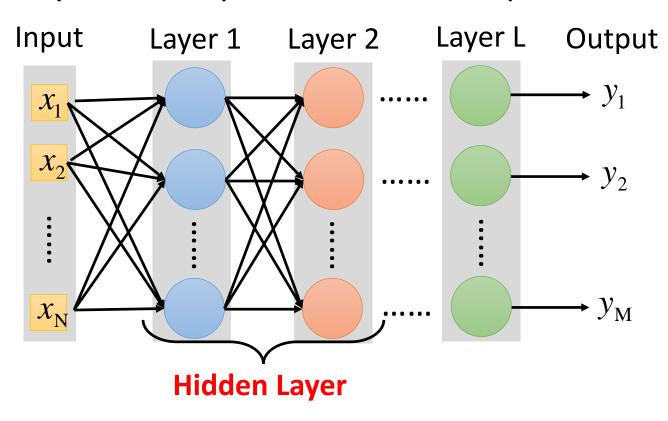
Each neuron is a very simple function



Deep Learning

A neural network is a complex function: $f: \mathbb{R}^N \to \mathbb{R}^M$

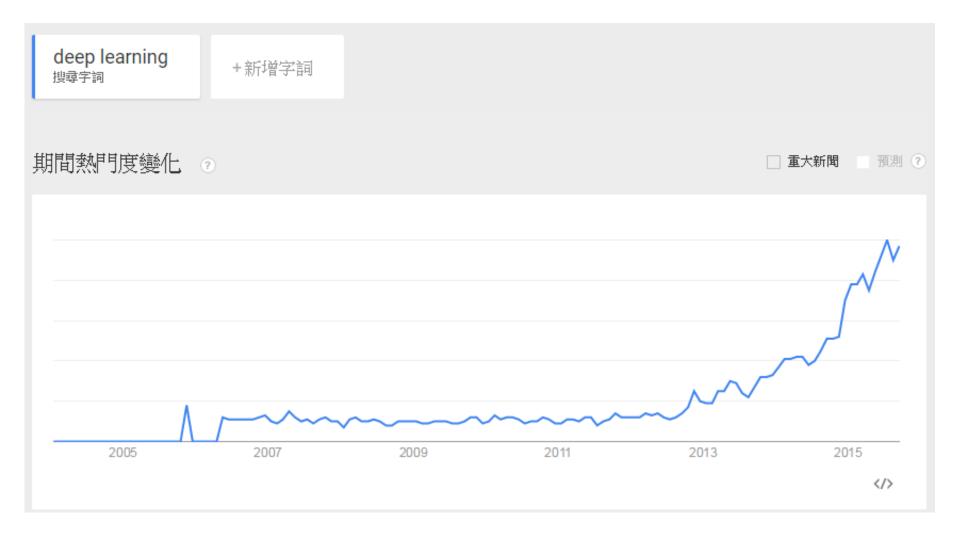
• Cascading the neurons to form a neural network. Each layer is a simple function in the production line.



Ups and downs of Deep Learning

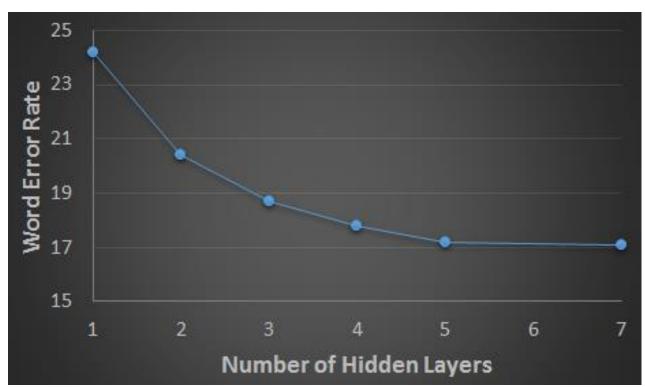
- 1960s: Perceptron (single layer neural network)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC competition (image)

Become very Popular



Why Deep Learning? Deeper is Better.

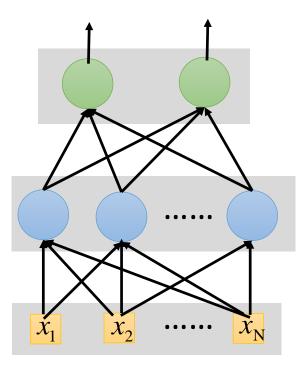
Speech recognition

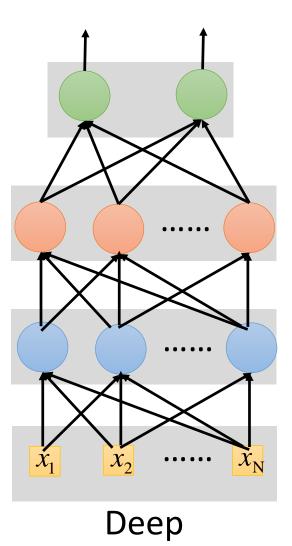


Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deeper is Better?

Deep works better simply because it uses more parameters.





Shallow

Universality Theorem

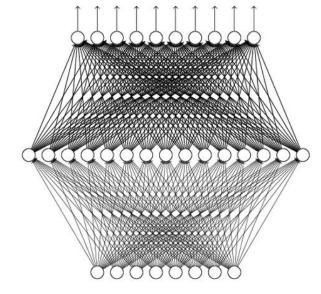
Any continuous function f

 $f: \mathbb{R}^N \to \mathbb{R}^M$

Can be realized by a network with one hidden layer

(given enough hidden neurons)

What is the reason to be deep?



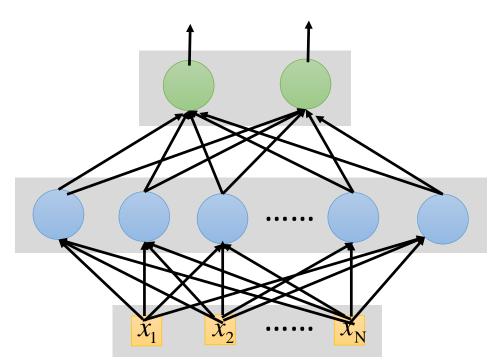
Reference: http://neuralnetworksandde eplearning.com/chap4.html

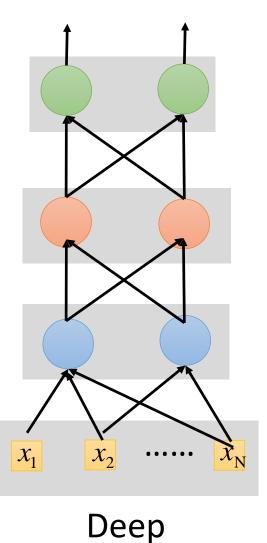
Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

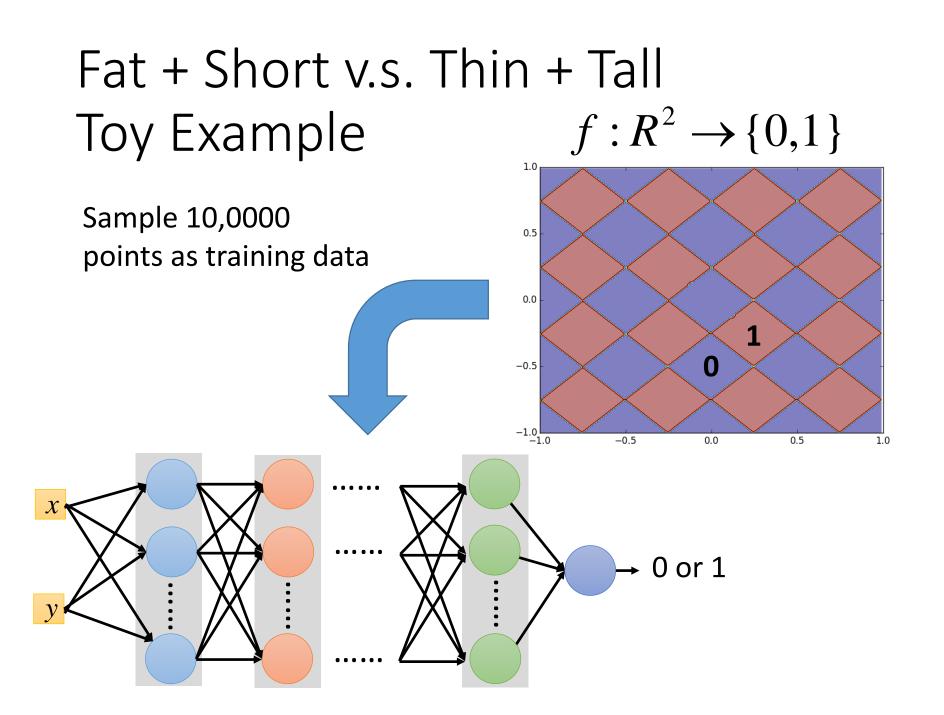
If they have the same parameters,

Which one is better?



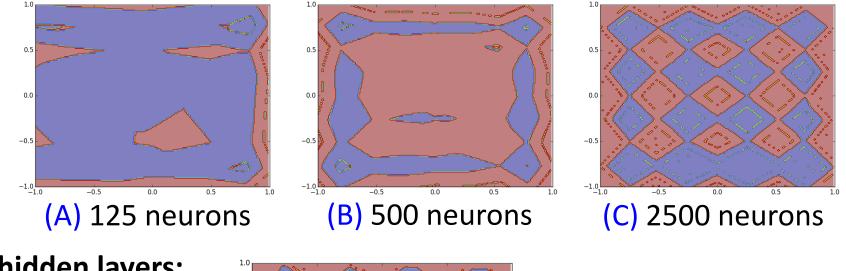


Shallow

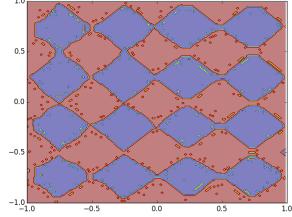


Fat + Short v.s. Thin + Tall Toy Example

1 hidden layer:



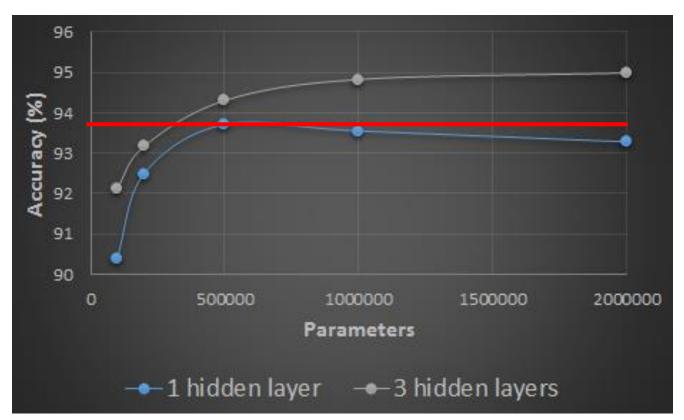
3 hidden layers:



Q: the number of parameters close to (A), (B) or (C)?

Fat + Short v.s. Thin + Tall Hand-writing digit classification

Same parameters



Deeper: Using less parameters to achieve the same performance

Fat + Short v.s. Thin + Tall Speech Recognition

• Word error rate (WER)

Multiple layers		1 hidden layer	
LxN	DBN-PT (%)	1xN	DBN-PT (%)
$1 \times 2 k$	24.2		
$2 \times 2 k$	20.4		
$3 \times 2 k$	18.4		
$4 \times 2 k$	17.8		
5×2k	17.2	1×3,772	22.5
$7 \times 2 k$	17.1	1×4,634	22.6
		1×16K	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Think about Logic Circuits

- A two-layer circuit of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).
- E.g. *parity check*

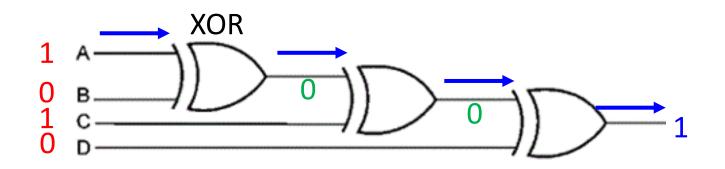
$$1 \quad 0 \quad 1 \quad 0 \implies Circuit \implies 1 (even)$$
$$0 \quad 0 \quad 0 \quad 1 \implies Circuit \implies 0 (odd)$$

For input sequence with d bits,

Two-layer circuit need O(2^d) gates.

Think about Logic Circuits

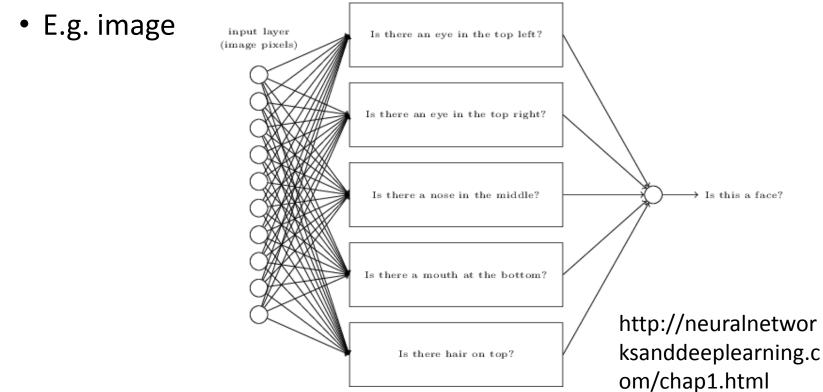
- A two-layer circuit of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).
- E.g. *parity check*



With multiple layers, we need only O(d) gates.

Back to Deep Learning

- *Some functions* can be easily represented by deep structure
 - Perhaps the functions that can be naturally decomposed into several steps

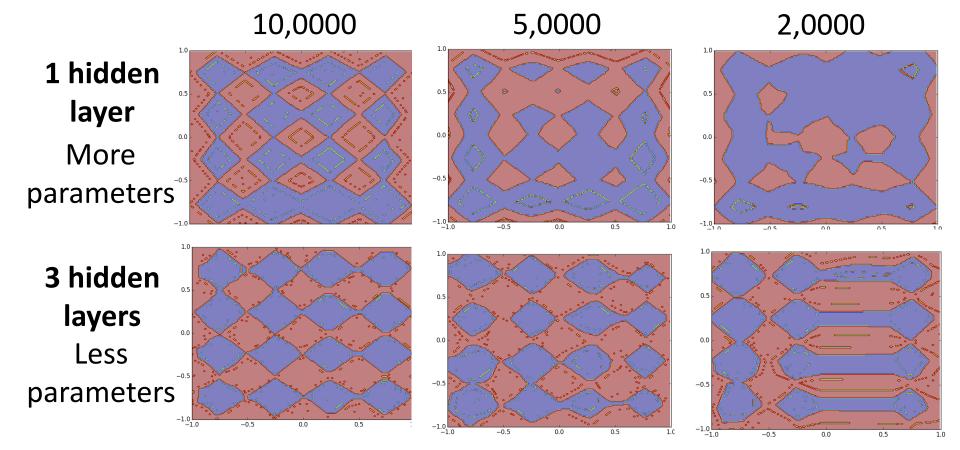


Back to Deep Learning

- Some functions can be easily represented by deep structure
 - Perhaps the functions that can be naturally decomposed into several steps
 - E.g. image
- To represent the functions with shallow structure needs much more parameters
 - More parameters imply more training data needed
- To achieve the same performance, deep learning needs less training data
- With the same amount of data, deep learning can achieve better performance.

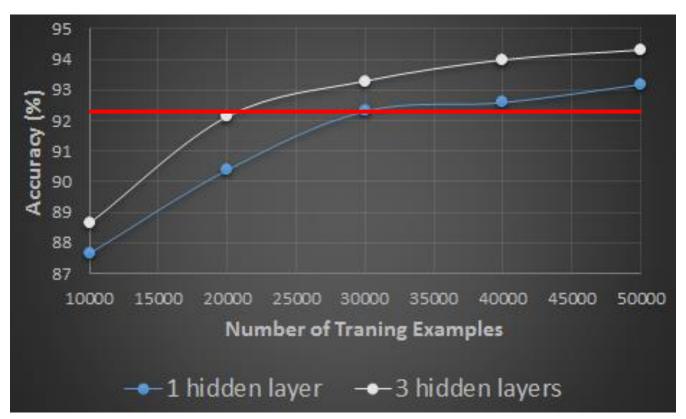
Size of Training Data

• Different numbers of training examples



Size of Training Data

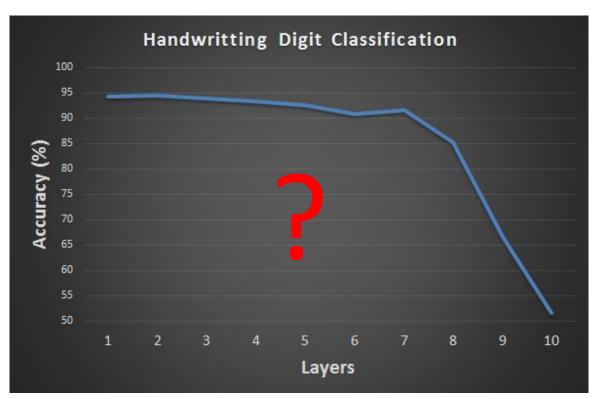
Hand-writing digit classification



Deeper: Using less training data to achieve the same performance

Why deep is not popular before?

• In the past, usually deep does not work



We will go back to this issue in the following lectures.

What is Structured Learning?

In the real world

 $f: X \to Y$

X (Input domain):

Sequence, graph structure, tree structure

Y (Output domain):

Sequence, graph structure, tree structure

Retrieval

$f: X \to Y$

X:

"Machine learning"

(keyword)

● 機器學習基石(Machine Learning Foundations) - Coursera https://www.coursera.org/course/ntumlone ▼

機器學習基石(Machine Learning Foundations) is a free online class taught by Hsuan-Tien Lin, 林軒田of National Taiwan University.

機器學習技法(Machine Learning Techniques) - Coursera

https://www.coursera.org/course/ntumItwo •

機器學習技法(Machine Learning Techniques) is a free online class taught by Hsuan-Tien Lin, 林軒田of National Taiwan University.

Machine Learning - Coursera

https://www.coursera.org/course/ml ▼ 翻譯這個網頁

About the Course. Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has ...

A list of web pages (Search Result)

Translation

 $f: X \to Y$

X:

"Machine learning and having it deep and structured"

(One kind of sequence)

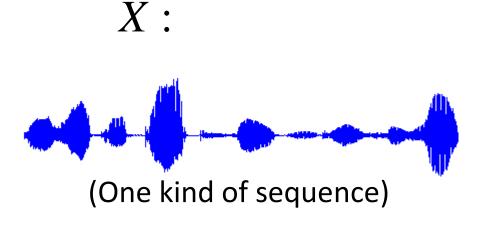
Y :

"機器學習及其深層 與結構化"

(Another kind of sequence)

Speech Recognition

 $f: X \to Y$

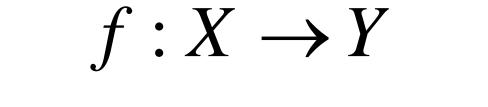


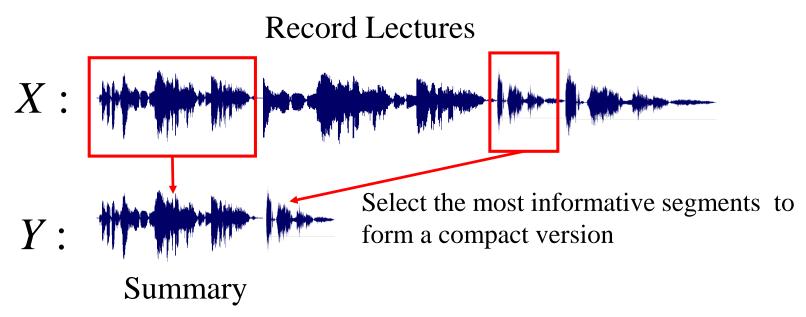
Y :

"大家好, 歡迎大家來修 機器學習及其深層與結構 化"

(Another kind of sequence)

Speech Summarization



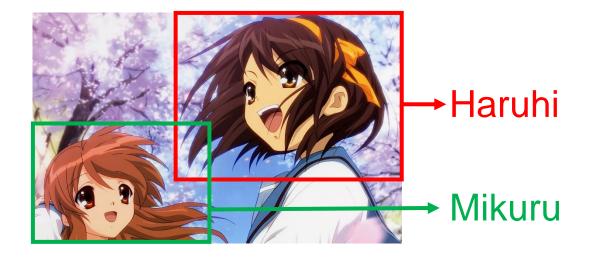


Object Detection

 $f: X \to Y$

X : Image

Y: Object Positions



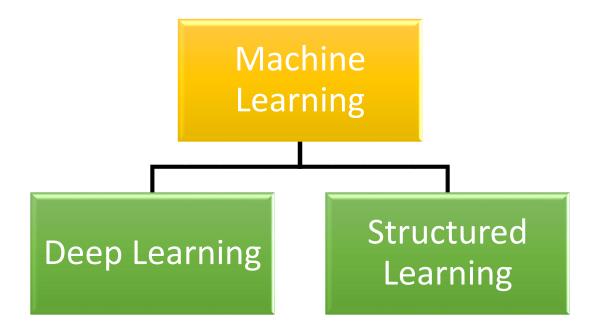
Pose Estimation

$$f: X \to Y$$

X: Image Y: Pose

Source of images: http://groups.inf.ed.ac.uk/calvin/Publications/eichner-techreport10.pdf

Concluding Remarks



Reference

- No Textbook
- Deep Learning
 - "Neural Networks and Deep Learning"
 - written by Michael Nielsen
 - http://neuralnetworksanddeeplearning.com/
 - "Deep Learning" (not finished yet)
 - Written by Yoshua Bengio, Ian J. Goodfellow and Aaron Courville
 - http://www.iro.umontreal.ca/~bengioy/dlbook/
- Structured Learning
 - No suggested reference

Thank you!

Human Brains are Deep

